Question		on	Answers	Marks	Guidance
1	(a)	(i)	The material is brittle.	B1	The term <i>brittle</i> to be included and spelled correctly to gain the first B1 mark.
			The material is also elastic.	B1	Allow 'does not show plastic (deformation)'
		(ii)	Straight line through origin followed by correct curve to show plastic behaviour.	B1 B1	Note: Tolerance for the origin is shown below
					0
	(b)	(i)	strain = $\frac{1.8 \times 10^7}{2.0 \times 10^{11}}$ (Any subject)	C1	The mark is for the correct use of strain = stress ÷ E
			strain = 9.0 × 10 ⁻⁵	A1	Allow 1 sf answer Ignore any unit given
		(ii)	$1.8 \times 10^7 = \frac{T}{\pi \times (2.6 \times 10^{-2})^2}$ (Any subject)	C1	The mark is for the correct use of stress = $\frac{F}{A}$
			tension = 3.8×10^4 (N)	AT	
		(iii)	$2T\sin 12 = W$	C1	
			weight = $2 \times 3.8 \times 10^4 \times sin12$ (Any subject)	C1	Possible ecf from (ii)
			weight = 1.6×10^4 (N)	A1	Allow 2 marks for 7.9×10^3 (N); factor of 2 omitted Special case: Using cos12 instead of sin12 gives 7.4×10^4 (N), allow maximum of 2 marks Allow full credit for correct calculation using the sine or the cosine rule Allow full credit for an answer using a correct scale drawing: Correct sketch of vector diagram C1; correct vector diagram drawn to scale C1; weight = $(1.6 \pm 0.2) \times 10^4$ (N) A1
			Total	11	

Q	uesti	on	Answers	Marks	Guidance
2	(a)	(i)	9.8(1) <u>m s⁻² / g / acceleration of free fall</u>	B1	
			The only force acting is weight / drag force is zero	B1	
		(ii)	(The maximum velocity when) drag = weight	B1	
		(iii)	The golf ball experiences greater drag (at terminal velocity to equal its larger weight) (AW)	B1	
			Drag increases with speed or drag $\propto v^2$ or the golf ball takes longer time to reach its terminal velocity or the golf ball accelerates for longer time	B1	
			The golf ball (has greater terminal velocity)	B1	
	(b)	(i)	drag = 2000 (N) from the graph	C1	
			net force = $3200 - 2000 (N)$ / net force = $1200 (N)$	C1	Possible ecf if reading off graph is incorrect
			acceleration = $0.15 \text{ (m s}^{-2}\text{)}$	A1	No credit for $3200/8000 = 0.4(0 \text{ m s}^{-2})$ or $2000/8000 = 0.25 \text{ (m s}^{-2})$
		(ii)	The drag force will be greater than the (constant) forward force (which cannot be) or at 32 (m s ⁻¹ drag) force is 3200 ± 100 (N) or at 40 (m s ⁻¹ drag) force is 5100 ± 100 (N)	B1	Allow maximum speed is 32 (m s ⁻¹)
	(c)		The time taken (for the driver) to stop is more or distance travelled (by the driver) is greater.	B1	Allow 'it takes longer to stop' or 'increases impact time'
			F= ma	B1	
			<i>a</i> decreases (hence <i>F</i> is smaller)	B1	Not slower acceleration
			Fx = KE	B1	KF = W (for work done)
			KE is the same (hence <i>F</i> is smaller)	B1	
			or E and a	D1	
			$F = \Delta p / \Delta t$	B1	
				12	
			Iotai	IJ	

G	Question		Answer	Marks	Guidance		
3	(a)		vertically down(wards) / vertically towards the ground	B1	Not: vertical / down		
	(b)		horizontal velocity = $24 \times \cos 30$ = 21 (m s ⁻¹) vertical component = $24 \times \sin 30$ = 12 (m s ⁻¹)	B1 B1	Note: Answer to 3 sf is 20.8 (m s ⁻¹) Allow: $12\sqrt{3}$ Allow: 1 mark if the answers have been swapped. Allow: 1 mark for answers of '3.7 and -23.7' obtained using '30 rad'		
	(c)		The ball is (still) moving at B / has horizontal motion at B / has horizontal velocity (of 20.8 m s ⁻¹) at B / has KE at B	B1	Allow: 'The ball has KE at the top / peak / maximum point'		
	(d)		$v^2 = u^2 + 2as$ Using the vertical component 12 (m s ¹) $0 = 12^2 - 2 \times 9.81 \times h$ h = 7.3 (m)	C1 C1 A1	Possible ecf from (b) Note: Answer to 3sf is 7.34 (m) Allow: $mgh = \frac{1}{2}mv^2$ Using 12 (m s ¹) C1 $h = 12^2/(2 \times 9.81)$ C1 h = 7.3 (m) A1 Allow: $m \times 9.81 \times h = \frac{1}{2} \times m \times 24^2 - \frac{1}{2} \times m \times 20.8^2$ C1 $h = (24^2 - 20.8^2)/2 \times 9.81$ C1 h = 7.3 (m) A1		
			Total	7			

C	Question		Answer	Marks	Guidance
4	(a)		velocity = rate of change of <u>displacement</u>	B1	Allow: Equation if labels are defined Not: velocity = displacement/time Not: A mixture of quantity and unit, e.g: 'change in displacement per second'
	(b)		work done = force × distance <u>moved</u> in direction of force	M1 A1	Allow: 'force × displacement' for the M1 mark
	(c)	(i)	It is at right angles to motion	B1	Allow: It is at right angles to slope / sledge
		(ii)	The component of the weight / W / mg (down the slope)	B1	Allow: W sinθ or mgsinθ Not: 'component of gravity' Allow: <u>Resultant</u> of W and N
	(d)	(i)	1 acceleration = gradient / $a = (v-u)/t$ a = 3.0/1.5 $a = 2.0 \text{ (m s}^{-2})$ 2 $a = g \sin \theta$ $\sin \theta = 2.0/9.81$ $\theta = 12^{\circ}$	C1 A1 C1 A1	Allow: 1 sf answer Possible ecf from incorrect value of acceleration <i>a</i> Answer to 3 sf is 11.8° Note : Using 10 m s ⁻² gives an answer of 11.5° - award 2 marks
		(ii)	a = (-) 15/3.5 or $a = (-) 4.29$ (m s ⁻²) m = 510/4.29	C1 C1	Ignore sign
			mass = 120 (kg)	A1	Answer to 3 sf is 119 (kg)
			Total	12	

Question		on	Answer	Marks	Guidance
5	(a)	(i)	Two equal but opposite forces	B1	
		(ii)	torque = one of the forces × <u>perpendicular</u> distance between the forces	B1	Use tick or cross on Scoris
	(b)	(i)	It will rotate / spin / turn Rotation is clockwise / (continue) to travel from left to right/ the rotational speed increases (with time)	B1 B1	
		(ii)	It will accelerate	B1	Allow: 'speed up' / 'speed increases' / 'velocity increases' / 'move faster'
			The idea that acceleration is to the right / Suggestion that satellite will 'turn'	B1	
			Total	6	